有网友碰到这样的问题“若两个数列{an}{bn}的前n项和分别为Sn,Tn,且对任意的n∈N*都有Sn...”。小编为您整理了以下解决方案,希望对您有帮助:
解决方案1:
等差数列{an},{bn}的前n项和分别是Sn,Tn,且Sn/Tn=2n-3/4n-3求a9/(b5+b7)+a3/(b4+b8)
-------------
前n项和公式为:Sn=na1+n(n-1)d/2
(即二次函数形式)
故设:Sn=
(2n--3)
x
kn
;
Tn=
(4n--3)
x
kn
(k
≠0);
所以
Sn=
2kn^2
--3kn
;Tn=4kn^2
--3kn
所以:S6=
72k
--18k=
64k
,S5=
50k--15k=45k
;则
a6=1/2(a3+a9)=S6--S5
=19k
即:a3+a9=38k
T6=144k--18k=126k,T5=100k--15k=85k;则b6
=1/2(b5+b7)=1/2(b4+b8)=T6--T5=41k
即:(b5+b7)=(b4+b8)=82k
所以:a9/(b5+b7)+a3/(b4+b8)=
(a3+a9)/(b5+b7)
=38k/82k=
19/41
-----------
a9/(b5+b7)+a3/(b8+b4)
=a9/2b6+a3/2b6
=a9+a3/2b6
=2a6/2b6
=(a1+a11)/(b1+b11)
=11(a1+a11)/11(b1+b11)
=[11(a1+a11)/2]/[11(b1+b11)/2]
=S11/T11
=19/41