一.选择题(共10小题)
1.四张完全相同的卡片上,分别画有圆、平行四边形、等腰三角形、矩形,现从中随机抽取一张,恰好抽到轴对称图形的概率是( ) A.
B.
C.
D.1
2.在一个不透明的口袋中,红色,黑色,白色的小球共有50个,除颜色外其它完全相同,乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在口袋中白色球的个数可能为( ) A.20
B.15
C.10
D.5
和
,则
3.抛掷一枚质地均匀的硬币,“反面朝上”的概率为,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是( ) A.每两次必有1次反面朝上 B.可能有50次反面朝上 C.必有50次反面朝上 D.不可能有100次反面朝上
4.计算机的“扫雷”游戏是在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.若游戏时先踩中一个小方格,显示数字3,它表示与这个方格相邻的8个小方格中埋藏着3颗地雷.如图,是小明某次游戏时随机点开一个方块所显示的数字,小明接下来在数字“2”的周围随机点开一个方块,没有踩中地雷的概率为( )
1 / 7
A. B. C. D.
5.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则最可能符合这一结果的实验是( )
A.掷一枚骰子,出现4点的概率 B.抛一枚硬币,出现反面的概率
C.任意写一个整数,它能被3整除的概率 D.从一副扑克中任取一张,取到“大王”的概率
6.从﹣2、﹣1、0、1、2这5个数中任取一个数,作为函数y=mx2﹣4x+2的m值(m为常数),则使函数图象与x轴有两个交点的概率是( ) A.
B.
C.
D.1
7.2020年五一期间,某消费平台推出“购物满200元可参与抽奖”的活动,中一等奖的概率为A.2×104
﹣
,用科学记数法表示为( )
B.5×105
﹣
C.5×106
﹣D.2×105
﹣
8.关于随机事件A发生的频率与概率,下列说法正确的是( ) A.事件A发生的频率就是它发生的概率
B.在n次试验中,事件A发生了m次,则比值称为事件A发生的频率
C.事件A发生的频率与它发生的概率无关
2 / 7
D.随着试验次数大量增加,事件A发生的频率会在P(A)附近摆动
9.某商场开业举行庆祝活动,凡是到商场的人均可参加“意外惊喜”的游戏,游戏规则为:一个袋中装有白球和红球共20个(这些小球除颜色外都相同),任意摸出一个球,如果摸到红球就可获得商场免费提供的一份礼品.据统计,当天参加活动的人数约5000人,商场发放了1000份礼品,试估计袋中红球的个数为( ) A.10
B.8
C.5
D.4
10.从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程是( ) A.
B.
C.
D.
+
=3有正数解,则符合条件的概率
二.填空题(共7小题)
11.一个不透明的袋中装有6个黄球,m个红球,n个白球,每个球除颜色外都相同.把袋中的球搅匀,从中任意摸出一个球,摸出黄球记为事件A,摸出的球不是黄球记为事件B,若P(A)=2P(B),则m与n的数量关系是
.
12.已知a,b可以取﹣2,﹣1,1,2中的任意一个值(a≠b),则直线y=ax+b经过第一、二、四象限的概率是 .
13.有六张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,则抽取的卡片上的数字为不等式组
的解的概率为 .
14.从﹣3,0,,1,2这5个数中任取一个数记为m,则能使二次函数y=(x﹣2)2+m的顶点在x轴上方的概率为 .
15.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到白球的频率稳定在20%附近,则估计口袋中的球大约有
3 / 7
个.
16.从﹣1,0,1,2,3这五个数中,随机取出一个数,记为a,那么使关于x的方程=1有解,且使关于x的一元二次方程x2﹣3x+a=0有两个不相等的实数根的概率为 .
17.2020年3月12日是我国第42个植树节,某林业部门要考察一种幼树在一定条件下的移植成活率,幼树移植过程中的一组统计数据如表:
幼树移植数(棵) 幼树移植成活数(棵) 幼树移植成活的频率
100 87 0.870
2500 2215 0.886
4000 3520 0.880
8000 7056 0.882
20000 17580 0.879
30000 26430 0.881
请根据统计数据,估计这种幼树在此条件下移植成活的概率是 .(结果精确到0.01) 三.解答题(共6小题)
18.在一个不透明的袋子里装有2个白球,3个黄球,每个球除颜色外均相同,现将同样除颜色外都相同的黄球和白球若干个(白球个数是黄球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是白球的概率是,求后放入袋中的黄球的个数.
19.某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况(1)从该企业的员工中随机抽取1人,求该员工手机月平均使用流量不超过900M的概率.
(2)据了解,某网络运营商推出两款流量套餮,详情如下
套餐名称
A B
月套餐费(单位:元)
20 30
月套餐流量(单位:M)
700 1000
流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需
4 / 7
要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以人均所需费用为决策依据,该企业订购哪一款套餐更经济?
20.今年疫情期间,为防止疫情扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,为此,孙老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了下面两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次参与调查的共有 人;在扇形统计图中,表示“微信”的扇形圆心角的度数为 ;其它沟通方式所占的百分比为 . (2)将条形统计图补充完整; (3)如果我国有13亿人在使用手机. ①请估计最喜欢用“微信”进行沟通的人数;
②在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?
5 / 7
21.由于空气污染严重,某工厂生产了两种供人们外出时便于携带的呼吸装置,其质量按测试指标划分:指标大于等于88为优质产品,现随机抽取这两种装置各100件进行检测,检测结果統计如表:
测试指标分组 频数
装置甲 装置乙
[70,76) [76,82) [82,88) [88,94)
8 7
12 18
40 40
32 29
[94,100]
8 6
(1)试分别估计装置甲、装置乙为优质品的概率;
(2)设该厂生产一件产品的利润率y与其质量指标的关系式为,根
据以上统计数据,估计生产一件装置乙的利润率大于0的概率,若投资100万生产装置乙,请估计该厂获得的平均利润;
(3)若投资100万,生产装置甲或装置乙中的一种,请分析生产哪种装置获得的利润较大?
22.某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买200元的商品就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券,(转盘被等分成20个扇形),已知甲顾客购物220元.
6 / 7
(1)他获得购物券的概率是多少?
(2)他得到100元、50元、20元购物券的概率分别是多少?
(3)若要让获得20元购物券的概率变为,则转盘的颜色部分怎样修改?(直接写出修改方案即可).
23.疫情防控期间,随着人们健康意识的不断提升,洗手液需求量剧增.某商场计划引进多个品牌的洗手液进行销售.现邀请生产洗手液的甲、乙两个厂家进场试销10天.两个厂家提供的返利方案如下:甲厂家每天固定返利70元,且每卖出一件产品厂家再返利2元;乙厂家无固定返利,卖出40件以内(含40件)的产品,每件产品厂家返利4元,超出40件的部分每件返利6元.两个厂家销售情况如下表: 甲厂家销量(件)
天数
乙厂家销量(件)
天数
38 1
39 2
40 2
41 4
42 1
38 2
39 4
40 2
41 1
42 1
(1)现从乙厂家试销的10天中随机抽取1天,求这1天的返利不超过160元的概率; (2)商场拟甲、乙两个厂家中选择一个长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.
7 / 7
因篇幅问题不能全部显示,请点此查看更多更全内容