发布网友 发布时间:2024-10-24 18:11
共1个回答
热心网友 时间:2024-11-01 00:46
令e^xsiny=u,x^2+y^2=v
则δz/δx
=δf/δu*δu/δx+δf/δv*δv/δx
=δf/δu*(e^xsiny)+δf/δv*(2x)
δ^2z/δx^2
=δ^2f/δu^2*(e^xsiny)*(e^xsiny)+δ^2f/δuδv*(2x)*(e^xsiny)+δf/δu*(e^xsiny)+δ^2f/δvδu*(e^xsiny)*2x+δ^2f/δv^2*(2x)*(2x)+2δf/δv
=(e^2x*(siny)^2)*δ^2f/δu^2+(e^xsiny)* δf/δu+(4xe^xsiny)*δ^2f/δuδv+4x^2*δ^f/δ^2v+2δf/δv
(f(u,v)具有二阶连续偏导数=>δ^2f/δuδv=δ^2f/δvδu)